

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 1

Cray Productivity Feature Evaluation
Abnormal Termination Processing

1 Abnormal Termination Processing
The Abnormal Termination Processing (ATP) feature manages the backtraces and core files that

are generated when an executing parallel program unexpectedly terminates. ATP does this by

reducing the many files generated into a manageable set and by providing a viewer to assist the

developer with inspection of the backtraces.

This feature is targeted for programs that execute on large numbers of processors.

1.1 Feature Description
As HPC systems have become ever larger, the amount of information associated with a failing

parallel application has grown beyond what the beleaguered application developer has the time

and resources to manage. The complete picture, delivered by tens of thousands of core files

(one for each process), swamps both the hardware and the user's comprehension. Yet, the

single core file of the original failing process is often not sufficient to study the problem. ATP

selects a manageable set of processes for which core files will be written. It selects this reduced

set based on grouping processes with similar state.

ATP also produces a single, merged stack backtrace tree. This tree presents a comprehensible

"picture" of what the application was doing at the time of the crash. Even with extremely large

processor counts, developers can see and understand the state of their application at the time

of failure.

An additional feature of ATP is its capability to hold a dying application in stasis and send e-mail

to the applications developer, thus providing an opportunity for the developer to access the

computer system while the application is still resident. The developer can perform a STAT

analysis and attach to the failing application with a debugger.

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 2

1.2 Availability for Evaluation
ATP capabilities were first introduced in the 1.0 release of the Cray Debugging Support Tools

(CDT) package, which was released in September 2009. This release includes support for a

single merged backtrace tree. The coalescing of core files will be introduced in a future release.

1.3 Benefits
ATP is invoked automatically (see Restrictions, below), making usage transparent to the

developer. It scalably monitors thousands of ranks in an application and presents a

comprehensible picture to the user describing what the application was doing at the time that it

crashed. ATP can do this with production codes that fail only rarely and yet capture the essential

data to provide vital clues to the nature of the underlying problem. Furthermore, it limits the

amount of required data to a tiny fraction of the worst case scenario (every single core file).

Scalability is expected to increase to 100,000s of ranks in the Cascade timeframe.

1.4 Restrictions
ATP is not yet fully implemented, and so the following restrictions apply:

 The automatic invocation of ATP when an application terminates requires an OS

modification which is planned for the Danube (2010) CLE release and thus not available

today. However, most of the capabilities of ATP can be experienced without automatic

invocation.

 Manual recompile and relink are required today.

 Core files are not currently produced with ATP, but support for these will be added in

the next release of CDT .

 When ATP is running, the application cannot be checkpointed. This will be addressed in

a future release.

2 Installation and Usage
The first ATP feature, the production of merged backtraces, was delivered as part of the Cray

Debugging Support Tools (CDT) 1.0 release in 2009.

A pre-release of the STAT stacktrace viewer is available. Once installed, a user can load the stat

module which will set up access to the executables and man pages.

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 3

2.1 Installation
First check if ATP is already installed. On the login node of an XT system, execute the commands

as shown in the example below.

If the module is not available (as indicated by no output from the first command in the

example), contact your system administrator.

Loading the module will set the ATP_HOME environment variable and make the intro_atp

man page available.

2.2 General Use

2.2.1 Build

Currently, the developer needs to modify the code to include the ATP signal handler as shown in

the example below. More information is in the intro_atp man page.

This will not be necessary in the next release of the CLE (Danube, 2010).

Check whether the atp module is available on the system

$ module avail xt-atp

xt-atp/1.0(default)

$ module load xt-atp

view the man page

$ man intro_atp

for C code, add the following interface and call

to the program

 void __atpHandlerInstall();

 __atpHandlerInstall();

link (note $ATP_HOME is defined by the xt-atp module)

$ cc –o a.out $ATP_HOME/lib/atpSigHandler.o code.c

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 4

2.2.2 Invocation

 ATP is invoked when an application is launched with the atpaprun command. It is also

possible to attach to an executing application with the atpFrontend command. Both the

invocation and the signal handler linking will happen automatically in the next release of CLE

(Danube, 2010).

2.2.3 Execution

ATP comes into play when a running application takes a fatal trap. On trapping, ATP

automatically gathers stack backtraces from all of the application processes and merges them

into a single backtrace tree, which is stored on disk for future analysis. The stack backtrace of

the first process to trap is sent to stderr. In the next release, ATP will also record (in a file) the

ranks and specific traps taken by each process.

2.2.4 Analyze

Examination of stderr’s stack backtrace is the first step one would take in attempting to

understand the application’s failure. That, and the type of trap taken, explains where and what

happened to the first process that trapped. The next step is to bring the STAT viewer up on the

merged stack backtrace. This view of the data will show what the entire application was doing at

the time of the trap. In the next release of ATP, it will be possible to bring up a debugger on a

reduced set of core files, thereby allowing examination of the data specific to various processes.

$ atpaprun –n 4 a.out

for Fortran code, add the following interface

and call to the program

interface

subroutine atpHandlerInstall() bind(c,name=”__atpHandlerInstall”)

end subroutine atpHandlerInstall

end interface

…

call atpHandlerInstall()

$ statview atpMergedBT.dot

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 5

2.2.5 Rerun

Based on what is learned from the analysis it may be necessary or desirable to run the

application again to gather more information. ATP will not behave differently on this second

run, but one could add debug output to the application or use a debugger to study specific

issues highlighted by the analysis so far.

2.3 Using the Provided Example

2.3.1 Material Location

An electronic copy of the example will be provided along with this feature description. It can

also be requested via one of the contacts listed at the end of this document.

2.3.2 Resource Requirement

There are no specific resource requirements other than access to a Cray XT system, along with

the CDT Release.

2.3.3 Running the Example

The sample program includes a README and a script to run the example. The basic operations

are shown in the example box below.

set up environment

$ module load xt-atp

$ module load stat

build executable

$ ln –s Makefile.atp Makefile

$ make

execute (may need to use batch)

export MPICH_ABORT_ON_ERROR=0

$ atpaprun –n 4 is.A.4.atp

view output

$ statview atpMergedBT.dot

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 6

2.4 Using Your Own Application
Using the above example as a guide, try this on your own parallel application. The application

must use one of the parallel programming models: MPI, Shmem, UPC or Co-Array Fortran.

If you are using the MPI or SHMEM library, it is a good idea to set either the

MPICH_ABORT_ON_ERROR or SHMEM_ABORT_ON_ERROR environment variables. This will

cause the library to throw a sigkill if an MPI or SHMEM consistency check fails. ATP will catch the

signal and produce a backtrace.

Good example candidates would be programs that are being ported or modified (that is, more

likely to encounter some errors), and that use large numbers of processors such that looking at

individual stack traces is difficult to manage. In addition, it would be helpful to have access to

the developer of the code or someone who is familiar enough with the code to interpret the

stack trace.

To experience the advantages of using ATP, the program should be run with a large number of

processes (or ranks).

3 Feedback Requested
We would like to request your feedback as part of this assessment.

3.1 Experience Running Your Own Application
 Please describe any difficulty working with your own application that was different

from what you expected

 Please describe what worked well and what didn’t work

 In your judgment, will this feature save you time or effort in the future?

 How would you characterize the savings (fewer iterations, less data to examine, etc)?

 What would you estimate for the savings time?

Cray Inc. Proprietary

NOT FOR PUBLIC DISCLOSURE Page 7

4 Contact information
Don Mason

dmm@cray.com

Margaret Cahir

n13671@cray.com

mailto:dmm@cray.com
mailto:n13671@cray.com

